当物理世界和网络世界的界限逐渐模糊,互联网营造的巨大虚拟世界,同样影响着人们的现实生活。在“电子社会”的背景下,和互联网有关的纠纷和案件越来越多,传统公证处的证据保全链条效率低下,程序复杂且费用不菲,准确性高、成本更低、程序简单的“电子数据存证”应运而生。 电子数据存证,简单来说,是把各种途径产生的电子数据,通过区块链、哈希算法、时间戳等技术实时保全固定,存储到一个安全稳定的数据库中,待需要使用时调取出来,同时,把上述过程通过可靠的方式记录并传输,以证明“该电子数据在那个时间是那样的。 安存科技是电子数据存证领域的拓荒者,2008年成立至今,已在该领域深耕12年,如今市场占有率高达50%以上,并同金融机构和司法部门深度合作。安存科技总裁冯保龙表示:“未来电子数据存证是社会基础性的标配,相当于水和电,而安存科技给自己的定位是‘可信电子数据构建者’,这点从来没变过。” “拓荒者”需要坐得住“冷板凳” 安存科技成立2008年,但在2015年之前,一直生意惨淡,艰难经营。每个公司在发展过程中势必要面对各种挑战,但是“安存科技”的经历却更难一些,因为它不仅要解决一般创业者面临的普遍问题,更面对的是一个未经开发的市场。 电子数据存证是数字经济的附属品,换句话说,电子数据存证市场大小和数字经济规模成正比。早期,中国数据经济总体规模偏小,2005年只占GDP的14.2%,如此的体量没办法孕育出成熟的电子数据存证公司,2014年数据经济总体规模达到161万亿,该市场逐渐被开发,2019年数据经济占总GDP高达36.2%,电子数据存证公司迎来“春天”。 如果说数字经济是电子数据存证市场生长的土壤,那么互联网金融就是催化剂。2015年中国互联网消费金融交易规模增速高达1186.2%,惊人数字背后乱象丛生,监管缺位下的违规企业比比皆是,人们对新金融模式越发“不信任”,给电子数据存证带来第一波机遇。同时,第三方金融机构爆炸式发展倒逼银行从“安逸”中清醒,以更为开放和主动的姿态拥抱新事物和新技术,给电子数据存证带来更多机遇。据冯保龙透露,如今银行已经成为安存科技的主要客户群体。 安存科技冷板凳坐了十几年,在自身实力增长的同时,更多是等待未知“风口”的到来。支持冯保龙及其团队的是他对未来的预判:“未来是电子社会,所有事物都可以数据化,肯定需要电子数据存证来证明数据的可信,我们相信这是正确的方向。” 科技+司法,两条腿走路 在这一领域,最为核心的问题就是保证“电子数据存证”的可信度,对此,安存科技“科技”和“司法”缺一不可,合理性需要技术保证,而合法性则需要司法承认。它的发展战略也是“科技”+“司法”,双轨并进。 据华诚的研究表明,电子数据存证的合理性体现在三个方面:1、电子数据存证服务提供者作为完全独立和中立的第三方主体;2、电子数据存证技术具备可靠性;3、电子数据存证的操作方式必须合法合规。其中,“技术”是最为重要的一点,也是安存科技成本投入最多的部分。 随着互联网案件的络绎不绝,司法系统内部逐渐开始意识到电子数据存证的重要性,以法律法规的形式予以承认,例如2018年9月《最高人民法院关于互联网法院审理案件若干问题的规定》第十一条:当事人提交的电子数据,通过电子签名、可信时间戳、哈希值校验、区块链等证据收集、固定和防篡改的技术手段或者通过电子取证存证平台认证,能够证明其真实性的,互联网法院应当确认。 仔细研究安存科技提供的服务,可以发现大多数情况下,安存科技提供的是金融机构或银行同司法系统连接的渠道,同时在服务上更方便金融机构和银行,例如定制化电子证据平台,提供了数据的智能化梳理、与法院系统的对接、一键诉讼等服务,这些都是银行需要的。 “通过技术手段,提升金融机构的不良清收效率,同时解决司法机构案多人少的困扰,这是安存作为专业第三方存证机构希望做的。” 安存科技的背后是一片荆棘,未来仍然是未知。冯保龙从不认为自己是一个成功的创业者,商人逐利,将十几年赌在一个行业之上,在失败的边缘徘徊,这不是一个合格的“商人”会做的事情。但是他是一个很好的“拓荒者”,坚定信念,耐心等待,不轻言放弃。
美元指数创近10年最大单月跌幅,全球储备货币地位会下降吗 综合反映美元在国际外汇市场汇率情况的指标美元指数持续走低,目前已跌破93关口。美元大幅贬值会影响其全球储备货币地位吗? 7月美元指数重挫4.4%,创下过去10年来的最大跌幅,也一度跌至2018年5月以来的两年多新低。与此同时,欧元录得近10年最大涨幅,英镑更是迎来了自1990年以来表现最好的7月。市场分析人士普遍认为,美元指数的下行趋势并未真正逆转。 景顺首席全球市场策略师Kristina Hooper指出,美国经济数据停滞不前,而因为很多家庭失去救济福利,8月份的数据可能会更加严重。 美国参议院预算仍在就继续减少财政刺激措施达成共识,若能实现,这将会是一项少有的能够解决美国面临的所有紧迫需求的措施,包括州政府和地方资金。相对于疫情似乎正持续改善的大多数主要经济体,预计美国经济将与这些经济体短期脱钩。最近的经济数据证明了这一点。上周美国首次申领失业救济金人数在经历连续15周下降后,出现连续两周上升。 美国商务部公布的首次预估数据显示,今年第二季度美国GDP按年率计算下滑32.9%,创上世纪40年代以来最大降幅。 Kristina Hooper进一步分析称,这一切都显示,在短期内美元的弱势可能会持续,而美国国债和黄金可能会继续受市场追捧。如果经济数据确实转弱并且美国的疫情未得到有效控制,预计长期增长的股票,尤其是科技领域的股票将跑嬴大盘。一旦经济数据开始明显改善,或有有效疫苗推出,市场对避险资产类别如国债和黄金的热情会减退。 中金公司则认为,全球正在发生的系列重大结构性变化,令美元可能处于新一轮长期走弱趋势的起点。 首先,欧盟解体风险显著下降,欧元价值重估。中金公司认为,自从5月27日欧盟委员会提议发行7500亿欧元共同债券以来,欧元对美元升值6.2%,已重回2018年中时期。令长期以来压制欧元的欧盟解体风险显著降低。因而,欧元有望迎来历史性的“价值重估”。 其次,政治摩擦加剧令美国资产安全性下降,全球外汇储备等资产的货币选择有望更加多元化,从而降低对美元储备的敞口。 第三,全球化停滞甚至倒退,美元需求减少。全球贸易退潮,也将令美元贸易结算需求减少。
据了解,继指纹、面部、虹膜之后,声纹作为象征我们个人ID的一部分,也陆续开启了商用大潮。近日,中国工商银行开始把声纹识别技术应用于信用卡反欺诈场景,在其位于北京、湖北、四川、山西的四家分行正式上线,在同业中率先开启了风险管控的新模式。 据前瞻产业研究院分析,当下全球生物识别产业规模庞大,仅语音生物识别(即声纹识别)这一细分方向的市场规模2020年有望超过1400亿元人民币,占整个生物识别市场的22.4%。未来随着5G、大数据、云计算等新技术发展愈发成熟、语音的入口更普及,可利用的语音数据会越来越多,声纹识别市场将迎来爆发。 相关上市公司: GQY视讯(300076):GQY银行机器人综合运用图像识别、声纹识别、语义理解、路径规划、动态避障等多种人工智能技术,为客户优质提供迎宾接待、金融业务、虚拟柜台及咨询问答等多样化服务; 奥马电器(002668):自主研发打造大数据智能金融云平台,基于先进的Docker容器集群技术,弹性编排计算资源,结合数据感知智能聚合技术、行为特征抓取、设备指纹、地理位置时序分析、声纹识别、多路路由智能决策等技术。
从“雾霾之战”的一战成名,到登陆科创板首日便股价翻倍,佳华科技在资本市场一直不缺少关注度。如今,被资本市场赋能后的佳华科技又踏上了新的征程。 近期,佳华科技屡传喜讯,先是成为首批智慧园区标准工作组成员单位,继而成功中标千万元级别的智慧园区项目,随后与山东省聊城市大数据局签订战略合作协议,公司董事长李玮同时被聘为首批聊城市政府特邀顾问。此外,公司还与重庆合川区签订了新型智慧城市投资建设运营项目的合作协议。 “公司将持续进行技术创新和市场拓展,拓展多源数据应用,实现数据的复用和增值,让公司成为物联网数据的‘托管地’,构建全产业链物联网云链大数据平台。”佳华科技董事长李玮在接受记者采访时表示:“未来,我们要成为物联网技术的推动者、领航者。这条路一定是对的!” 被误认为环保企业的 物联网大数据公司 实际上,早在登陆资本市场之前,佳华科技就已在业内享有较高的知名度。 “雾霾”是2014年的一大关键词。当年,佳华科技为北京市通州区研发出了大气网格式监测体系,助力通州区形成完备的空气质量监测网络。次年,通州的空气质量明显提高,通州区环保局因此建立了享誉全国的“通州模式”。 “雾霾之战”让佳华科技一战成名,但也成为市场对该公司认知的一大束缚,由于佳华科技在智慧环保领域的垂直化深入挖掘,公司一度被很多人误认为是一家环保企业。 “佳华科技实际上是一家物联网大数据公司。”李玮对记者强调,“环保领域的信息化基础比较弱,竞争对手少有大公司。我们可以用环保作为流量入口,进而拓展到智慧城市的其他领域,然后再做全产业链的物联网大数据。” 如果说在环保领域的布局是佳华科技在垂直领域的探索,智慧城市领域则是公司逐步补全产业链的下一个目标。在佳华科技的战略发展规划版图中,公司以智慧环保业务为导流,向智慧城市的各个垂直领域拓展。公司积极研发视频应用、升级云链数据库、拓展人工智能AI算法等,不断融合多源多维的数据源,如视频、雷达、卫星遥感数据等,作为智慧城市的数据基础,打通城市管理中不同部门间的数据壁垒及“孤岛”状态,形成高效的协同配合,提升城市管理和服务水平。 “我国园区向着智慧化、创新化、科技化转变已是大势所趋。”佳华科技方面相关负责人向记者介绍,在“新基建”驱动的数字经济热潮中,智慧园区作为重要载体,是工业企业聚集发展和相关产业聚集发展的核心抓手,也是构建万物互联的智能世界的落脚点。 中标千万元大单 角逐物联网巨头 佳华科技近日宣布,成功中标重庆市合川区产业园区信息基础设施(智慧园区)项目,中标金额5439万元。市场人士认为,这是公司技术底蕴深厚、大数据运营能力强大的一个体现。 7月29日,全国智标委智慧园区标准工作组成立会在线上召开。在这次会议上,全国智标委副主任委员马虹宣读了智慧园区标准工作组成立批复文件及发起单位成员名单,佳华科技赫然在列,成为首批智慧园区标准工作组成员单位。 8月1日,以“聚焦区位新优势,聚力水城新发展”为主题的第二届江北水城“双招双引”大会在山东省聊城市召开。会上,佳华科技董事长李玮被选聘为首批市政府特邀顾问,公司还与聊城市大数据局现场签订《战略合作协议书》,开启了深入合作的序幕。 8月7日,佳华科技与重庆市合川区人民政府签订“智慧产业大数据运营中心及人工智能综合应用平台、合川新型智慧城市投资建设运营项目”合作协议。合作内容为:佳华科技为拓展面向全国市场的数据运营服务,在重庆合川投资建设智慧产业大数据中心(PAAS平台)及人工智能综合应用平台(AISAAS服务),合计投资预计约3亿元;合川区政府(甲方)将开展合川区智慧城市各类SAAS应用升级和新建项目,预计投入5亿元至7亿元,拟由佳华科技(乙方)通过FEPC模式进行项目建设,甲方分年度购买服务。 据佳华科技方面介绍,公司已在智慧园区领域深耕多年,为全国89个城市提供物联网数据服务,对城市中的产业园区提供智能化数据服务,为园区企业进行精准的线上SAAS服务,以信息化、智慧化方式助力园区管理和园区内企业可持续发展。 为此,佳华科技已经做了多年的准备。2003年12月份,李玮赴美深造后归国创业,攻克的第一个难题就是山西矿井的智能化改造问题,涉及煤矿安全监控、水环境监测、能耗监测、农产品溯源等多个领域。为了建成智慧矿山,李玮和佳华科技的创业团队花费了长达4年的时间。在这4年里,他们的足迹遍布山西、陕西、内蒙古、贵州等地,几乎每一天都在矿井下实施运行维护。 “物联网涉及现场采集,需要用什么样的传感器、用什么协议、形成什么样的数据,以及最后形成什么样的服务,各方面我们都做。”谈及创业初期的岁月,李玮笑称,初创团队就是一支“物联网施工队”。 初创时期的艰苦历程让佳华科技初创团队得以接触各种大型监测系统,积累了丰富的物联网解决方案项目经验,并坚定了公司构建物联网云链大数据平台的发展方向。 多年来,佳华科技坚守的目标是:从垂直的优质赛道入手、做全国性的智慧环保SAAS数据服务企业;布局PAAS平台服务,从智慧园区入手,为智慧城市打好“底座”,集合第三方数据服务企业,建立SAAS服务的生态链,打造智慧产业,向“万物互联”的愿景迈进。 “物联网发展了这么多年,一直没有出现巨头公司,最主要的原因是大家做的只是物联网中的局域网。”在李玮看来,去做物联网的数据“托管地”,并为数据赋能和增值,这正是佳华科技想要为之奋斗的目标。
一打开微博,被热搜吸引了眼球。 资料来源:微博 美东时间8月6日,美国国务院宣布解除对本国公民的“第四级全球旅行警告”。 上述这一警告自今年3月19日发出,旨在基于疫情影响,建议美国公民避免一切国际旅行。 资料来源:官网公告 “鉴于一些国家的卫生和安全状况正在改善,而其他国家可能正在恶化”,国务院恢复以前实施的按具体国家和地区给出旅行建议的制度。”——美国国务院 资料来源:推特 受此消息影响,隔夜美股航空股短线上扬,有所提振。 数据来源:Wind 然而,美国这一“此一时彼一时”的做法让人摸不着头脑,遭到网友诸多吐槽。 资料来源:微博 毕竟,进入下半年,新冠疫情依旧面临严峻挑战,而美国作为疫情发生的“主要震中”继续反复爆发,相关经济表现持续低迷,人们消费信心连连下降,哪有开始说走就走的旅行一说。 在此之下,早已陷入亏损泥潭的航空业也只怕是越陷越深了。 “不受欢迎”的美国人 新冠疫情大流行的阴影依旧笼罩在全球上空。 根据最新数据显示,截至目前,全球新冠肺炎确诊病例超过1922万例,累计死亡超过71万例,目前美国、巴西和印度的确诊病例数约占全球确诊数的一半,形势严峻。其中,全美共报告新冠肺炎确诊超过503万例,累计死亡超过16万例。 数据来源:微博 “在过去的七天里,一个严峻的新情况出现了:在美国,每80秒就有一人死于新冠病毒"——美国全国广播公司 时至今日,美国可以说是“自食恶果”,毕竟在疫情爆发初期,对疫情的轻视使得其未能有效进行防控,一错再错,错过了控制疫情蔓延的最佳拐点。 而这一形势或许继续不受控。 “在美国波士顿、芝加哥、底特律和华盛顿等城市,新冠病毒阳性比例还在缓慢上升,这预示着“未来不妙”。”——美国国家过敏和传染病研究所所长福奇 在这么一个混乱的疫情时期,美国选择取消全球旅行着实是“迷惑行为”,毕竟目前来说,目前全世界绝大多数国家与地区对此并不乐见,本身也不接受美国游客入境。 资料来源:微博 中国继续暂停持有效中国签证、居留许可的外国人入境; 加拿大、墨西哥等地对来自美国的非必要旅行限制至少持续到8月下旬; 欧盟继续禁止美国游客入境,英国要求入境必须隔离14天; “就算美国解除了全球旅行警告,各地都没有欢迎美国旅行者”。——《国会山报》 因此,就外部环境而言,这一取消全球旅行警告对美国人来说,可谓是“旅游了个寂寞”,基本无处可游。 美国经济“自身难保” 而除了外部的限制之外,也许美国人自身也并没有什么闲情逸致去旅游。 在疫情还未平复之际,美国急不可待重启经济,使得疫情得到进一步激化,反而致使经济前景不确定性加重,尤其是在美联储的无限量放水之后,实体经济和金融体系之间的结构性矛盾进一步凸显。 “录得新增就业仅仅为16.7万人,远低于预期(150万人),前值从236.9万大幅上修至增加431.4万人。”——最新美国7月ADP就业报告 当美股的泡沫虚高、美元指数持续下挫、政府债务风险激增、失业率反弹等一系列痛症避无可避之时,人们对美国经济前景趋于悲观,避险情绪自然占据上风。 美元指数情况 数据来源:Wind 10年期美债收益率情况 数据来源:Wind 这也就是为什么金价居高不下,频创记录的原因,毕竟美国经济和疫情一样,都具有较大的不确定性。 数据来源:Wind “这种对短期前景的不确定性,对经济复苏和消费者支出来说都不是好兆头。”——美国经济咨商会经济指标高级主管Lynn Franco 而在这样的情绪支配之下,市场信心和投资下滑也是有目共睹的,此时吃饱穿暖按时交房租才是真理。 “7月美国消费者信心指数从6月的78.1下跌到72.5,远低于去年同期(98.4)....7月美国消费者期待指数从6月的72.3下降到65.9。”——美国商务部 要知道一般来说,个人消费支出约占美国经济比重的七成,是促进美国经济增长的重要助力,而从上述可以看出,在短期内,美国消费者支出很难恢复正常水平,这也意味着:即便是解除所谓的“全球旅行禁令”,人们也可能不会买账,只会更加握紧手中的钱袋子,那么与其直接相关的“嗷嗷待哺”的航空业也只能继续挣扎求生。 提振航空业“有心无力” 疫情打击了各行各业的发展势头,其中,旅游业自然首当其冲,拖着本就显出疲态的航空业一同陷入低谷。 美国联邦运输安全管理局检查点安检人数 数据来源:TSA 在防控期间,没有客流量的航空公司如同失去梦想的咸鱼,巨亏成为了常态。 美国航空公司二季度营收16亿美元,同比下降86.4%,净亏损达到20.67亿美元; 美国联合航空公司二季度营收为14.75亿美元,仅为去年同期的零头(114.02亿美元);二季度净亏损为16.27亿美元,由盈转亏(去年同期盈利10.52亿美元); 达美航空二季度营业收入14.68亿美元,同比下跌88.29%;净亏损57.17亿美元,同比下降496.19%,为2008年以来最大亏损数额; 西南航空公司二季度营收略高于10亿美元,同比下降近83%,净亏损9.15亿美元,盈转亏(去年同期盈利7.41亿美元)... “今年二季度,四大航企(美联航、达美航空、美国航空和西南航空)营收累计55亿美元,运营开支达到159亿美元,净亏损近120亿美元,相当于平均每天就要亏掉1亿美元。”——公开数据 航空公司盈利框架图 资料来源:平安证券 要知道,航空业具有重资产、高负债等属性,运行成本压力一直不容忽视,而这在疫情面前已不堪一击,面对骤减的客座率,于是我们看到了它们的“不得已而为之”,即收缩成本、大额裁员等自救之举。而随着在价值320亿美元的航空业援助计划支持逐渐减弱,9月底之后,一旦没有新的政府援助,美国航空业或加重这一恶性循环。 美国国内航班机票销售的下降情况 数据来源:DDS 购买国际机票的乘客数量的下降情况 数据来源:DDS “目前的环境比我们想象的更加不可预测,更加不稳定。”——美国航空公司首席执行官道格·帕克 美国航空WOLF STREET指数 数据来源:YCharts 对此,巴菲特已有先见之明,“忍痛割爱”,纷纷清空了美国四大航的股票,总计数十亿美元。 “受新冠疫情影响,航空业已发生根本变化,三四年内航空客运人数都不会恢复到去年水平。”——巴菲特 今年以来,美联航股价已累计下跌超60%。 数据来源:Wind 达美航空累计下跌超53%,美国航空累计下跌超54%。 数据来源:Wind 而在此颓靡之象下,“取消全球旅行警告”这一举措或只是安抚人心的一纸空谈,隔夜美股的短线拉升就如同夏日绽放的烟火,短暂灿烂过后剩下喘息求生的虚无。 结语 新冠大流行这一卫生事件还未真正解决之时,美国这一取消全球旅行的警告实在有些“鸡肋”,毕竟疫情已重创经济,抑制消费,再加上多国的入境限制,人们难以心大的去出行。因此,在很大程度上,这一句“口嗨”也许只是特朗普为获取连任而提振市场信心,促消费的小手段之一。 而在此情形之下,美国航空业的处境就显得较为卑微了,这一疫情重灾区所面临的经营困局大概率在中长期内无法解除,漫漫复苏之路道阻且艰。
本篇报告是经济数据分析手册系列的第二篇——工业数据篇。我们将先从工业增加值数据开始讲起。 工业增加值数据,反映的是工业生产的快与慢。而工业生产又与经济的冷热状况密切相关。通过分析工业增加值数据,我们可以对经济的供给端有更深的了解。本文对工业增加值数据的介绍包括三个方面: 第一,工业增加值数据的核算流程是什么? 第二,怎么解读工业增加值数据? 第三,可以通过哪些方式预判工业增加值数据的变动? 1 初识工业增加值数据 (一)工业增加值是什么? 我们曾介绍过GDP的具体核算流程。按照生产法,需要分别计算出国民经济各行业的增加值,然后加总得到最终的GDP。(详见《GDP分析手册》) 工业增加值,其实就是GDP核算中的工业部分。 什么是工业?“工业”概念在我国经济统计中有非常明确的范围界定,它包含三个国民经济门类行业:1)采矿业。2)制造业。3)电力、热力、燃气及水生产和供应业。其中制造业最重要,占比在85%左右。 统计局会在公布GDP数据时,同时公布分行业的增加值数据,当然其中也包括季度、年度的工业增加值。 本篇报告讨论的重心主要在于月度工业增加值数据。它和年/季度的工业增加值,概念上没什么差异,但也有一些特殊性: 一是考虑到时效性,需要每月独立核算。并且由于基础资料不完整,只能采用推算方法。 二是统计范围更小,只统计了规模以上工业(年主营业务收入≥2000万的工业企业)的数据。 (二)月度工业增加值数据怎么核算? 月度工业增加值数据的生产过程并不算复杂,分为三步走。第一步是计算上年度工业增加值率,第二步是核算本月规模以上工业总产值,第三步是利用增加值率法来推算本月工业增加值。 第一步。要得到上年度的工业增加值率,就要先计算各年度的工业总产值、工业增加值。核算基础数据来自于每年的工业企业成本费用调查。 2009年起统计局正式实施这一调查。调查范围是全部大中型工业企业和部分规模以上小型工业企业,它们约占所有规模以上工业企业的1/3。被调查企业需要填写工业企业成本费用表。这个表格覆盖的企业数据内容是比较全面的,包括折旧、职工薪酬、税费等。基于这些数据,统计局可以直接计算出各企业的增加值(由收入法的四个项目加总而成)和总产值。 将各企业的工业增加值、总产值按照行业划分进行合并汇总,可以计算出国民经济中类行业、大类行业以及总的工业增加值和总产值。然后用行业增加值÷总产值,可以得到各行业的工业增加值率。 第二步。本月度的规模以上工业总产值数据,主要来自于每月规模以上工业企业上报的“工业产销总值及主要产品产量表”。 其中工业总产值又主要包括三部分:1)本期产成品价值。2)在制品、半成品本期的价值增值。3)对外加工费。 将各规模以上企业的数据按照行业进行汇总,即可得到行业的月度总产值数据。 值得一提的是,2012年之后,企业都是直接通过国家联网直报系统上报月度工业产销总值及主要产品产量数据,然后再由国家统计局进行汇总,避免了之前数据传报过程中可能发生的人为调整数据的情况,所以数据质量还是比较高的。 第三步。各行业月度规模以上工业总产值×上年度各行业增加值率=各行业规模以上工业增加值。再将它们继续汇总,可以得到大类、门类行业以及总的工业增加值。 为什么只能推算?主要还是受月频数据的时效性制约,统计局很难获得企业详细的财务费用数据,所以无法像年度数据一样,直接依据收入法计算增加值(年度数据也只有被调查企业才有详细数据)。只有产量、产值的数据是比较好摸清的,所以只能采用增加值率法间接推算。 不过,考虑到与GDP数据的衔接问题,统计局在2006年11月之后,就已经不再公布月度工业增加值的绝对值数据了,而只发布增速数据,这一点需要注意。 这里的增速指的主要是不变价增速。所以首先要将现价工业增加值转为不变价工业增加值,方法是价格指数缩减法,我们在GDP核算中曾提到过。 PPI是工业所采用的价格缩减指数。不同中类行业用对应的PPI缩减,然后再将行业不变价增加值加总,得到行业大类和总的不变价工业增加值。 在有了不变价工业增加值后,就可以计算增速。目前统计局既会发布同比增速,也会发布季调后的环比增速。环比增速自2011年2月份后发布,季调方法和GDP一样,也是采用统计局研制的季节调整软件(NBS-SA)。不过在增速计算方面,有一点处理上的细节,我们在此按下不表,下文会再提到。 总结上文,针对目前统计局发布的月度工业增加值数据,我们认为有四点需要把握: 1)月度工业增加值是一个利用上年度增加值率间接推算出来的数据。 1)目前只公布工业增加值的增速,不公布绝对值。 2)度量的是规模以上工业企业,不是所有工业企业。 3)是用不变价工业增加值来计算增速,而不是现价,即剔除了价格因素。 (三)“规模以上工业”统计口径的变化 上文中我们提到了“规模以上”这个概念。将工业分为“规模以上”和“规模以下”,主要还是考虑到现实中的统计局限性。一方面是规模以下工业企业数量繁多,统计起来有难度。另一方面是因为很多小企业缺乏完整清晰的财务核算流程和财务报表,又很难严格落实统计数据填报的准确性,所以如果纳入了小企业,可能会让数据质量打折扣。 虽然目前规模以上工业企业数量有限,但是它们的增加值占所有工业企业的比例,大约在80%以上,还是具有较强的代表性。 统计局每年都会按照企业前一年的营收规模,来评定是否将其纳入规模以上工业企业名录(由企业向统计局审报)。符合这个标准的企业每年是有变化的,比如有新建的、营收扩张的、也有破产倒闭的、营收下降的。所以这个名录内的企业范围一直在变动。 比如企业A的2018年营收规模超过2000万,则会在2019年纳入该名录(简称为“升规”),若该企业2019年经营不善,营收又回到2000万以下,则会在2020年被划出该名录(简称为“退规”)。 读者在这里可能会有疑问:如果名录内的企业进进出出,那么不同时期的工业增加值,可能会面临统计口径不可比的问题。比如去年可能统计了企业A的增加值,今年A变为了规模以下企业,就没有被统计。那么统计局发布的工业增加值的月度同比增速数据,对此是如何处理的呢? 一个基本原则是:以本期的企业范围为基准。比如去年有100家规模以上工业企业,企业A升规之后,今年规模以上企业变成了101家,企业A会同时填报本期和上年同期的工业数据。这时在计算增速时,无论是分子(本期工业增加值)还是分母(上年同期工业增加值),都以这 101家工业企业为准来计算。 这也意味着,如果我们试图用以前的名义工业增加值绝对值,再结合同比增速数据、PPI数据,倒推出当前各月规模以上工业增加值的绝对值,会产生比较大的估算误差,因为增速的口径一直在动态调整,而口径的变动细节是我们所不掌握的。 另外,“规模以上工业”的标准,本身也经历了多次调整: 1)1998-2006年,指全部国有和年主营业务收入≥500万元的非国有工业法人单位。 2)2007-2010年,指年主营业务收入≥500万元的工业法人单位; 3)2011年至今,指年主营业务收入≥2000万元的工业法人单位。 从标准的变化来看,一是所有制色彩在淡化,这反映了民营经济的壮大。二是营收门槛在抬高,说明我国工业企业规模正在不断扩张。 21世纪以来,规模以上工业企业单位数迅速增长。2011年门槛调高后,规上工业企业数量减少,而后缓慢增加,截至2020年5月,共有37.5万家规模以上工业企业。 2 如何解读工业增加值? (一)从总量上观察工业增加值 目前可以获取的月度工业增加值数据,有当月同比、累计同比、季调环比。目前市场和研究者采用的比较多的还是同比增速。 在中国,1月和2月存在春节错位因素。如果上一年春节假期在1月,企业停工,而今年春节今年在2月,那么今年1月工业增加值增速将大幅冲高,2月数据则陡然下行,进而会导致工业增加值当月同比时间序列图中出现一些明显的“尖刺”。 一个简单的处理办法是,不考虑1月和2月的当月增速,而将它们直接合并起来,用1-2月累计增速代替,这样就可以消除春节影响,使得整体数据走势更为平滑。事实上,自2013年起统计局就开始合并发布1-2月份工业数据了。 工业增加值同比增速,反映的是工业生产的快与慢。而工业生产又与经济的冷热状况密切相关。 如果工业增加值增速上升,说明工业企业开工生产的积极性提高,背后可能反映了更旺盛的社会需求,或者至少说明企业对短期经济前景是更加看好的。当然,影响因素可能来自多方面,但工业生产的变化,或多或少反映了一些值得关注的经济信号。 相较于其他经济部门,工业生产对于经济景气度会更敏感。因为企业可以根据销售情况比较灵活地调整生产计划,不会有太强的时滞。跟踪工业增加值能够比较有效地捕捉到经济短期变化。 有一个问题在于,目前我国产业结构正逐渐偏向服务业,那么工业增加值还能在多大程度上反映我国经济形势? 的确,工业增加值占GDP比重一直在降低,但是目前仍然有30%左右,还是有一定的代表性。 更重要的是,工业生产与其他产业之间有很紧密的联系。例如其他产业所需要的原材料、机械设备,大多来自于工业部门,这意味其他产业的需求好转,也将体现为工业生产的加快。而工业生产加快,又会带动其他产业特别是生产性服务业的发展,如物流运输、研发设计、商务服务等。所以说工业生产的加快,同时反映了其他产业的情况。 从数据层面来看,工业增加值增速与GDP增速走势也基本是保持一致的。不过2012年以来,工业增加值增速走弱,GDP却保持了较强的韧性(主要是服务业起了支撑作用),这也的确说明了工业增加值的信号意义有所削弱。 工业生产很大程度上受消费、投资、出口等下游需求影响。其中,房地产和工业生产的相关性很强,主要是因为房地产施工所涉及的工业面很广泛,包括建材、钢铁、化工,各种机械设备等。另外,地产竣工也可能会带动家电、家具等行业的生产活动加快。 数据方面,房地产投资增速和工业增加值同比之间,确实保持着较高的同步性。 但工业生产有时候也会与需求出现错位。供需关系间的动态互动过程,被人们总结为库存周期。这个周期包含四个阶段: 1)被动去库存:需求已经复苏,但企业还未即时反应,生产不足,因此库存减少。 2)主动补库存:企业主动加快生产,补充存货,以应对未来需求的增长。 3)被动补库存:需求开始疲软,销量下降,企业未及时调整生产,导致库存积压。 4)主动去库存:企业已经预见到了经济的不景气,主动减少生产,带动库存下行。 四个阶段分别对应经济的复苏期、繁荣期、衰退期、萧条期。 工业增加值和工业企业产成品存货,分别描述了生产和库存状况。不过产成品存货是名义值,所以我们也简单以“工业增加值同比+PPI同比”来指代名义工业增加值增速。基于这两个指标,可以简单地对库存周期进行刻画。比如名义工业增加值增速上行,产成品存货增速下行,意味着经济进入了被动去库存的阶段。 可以看到自2003年以来,我国已经经历了5轮相对完整的库存周期。在下一篇工业数据分析报告中,我们将花更多的篇幅来分析库存周期。 工业生产除了会受需求因素影响外,还可能受价格因素影响,特别是上中游原材料行业。因为价格上涨,会从价的角度会提高企业盈利水平(需求好转则是影响“量“)。盈利增厚了之后,将使得企业有更充裕的现金流,对未来的预期可能也会更好,进而加快工业生产。 此外,工业生产还和流动性环境有关。当流动性宽松的时候,一方面,企业更容易融资,有利于加大生产。另一方面,也容易刺激社会需求,进而带动生产。 社融增速与工业增加值累计同比增速有较好的相关性,在部分时期有一定的领先性。 (二)从结构上观察工业增加值 有时,影响工业生产的因素是全局性的,几乎所有行业的增加值同比都向同一个方向调整,这种因素比较显著,往往更容易识别。但有时,不同行业间也存在分化,这些信息会被整体工业增加值数据的升或降所掩藏,所以除了观察总量数据以外,还需要观察结构。 首先我们需要了解各工业行业的增加值占比。 目前统计局会同时披露41个工业细分行业的月度数据。但由于统计局并没有披露绝对值,年度数据的细分程度目前也只到采矿业、制造业、电力热力燃气及水生产和供应业三个门类行业,因此要通过其他途径来计算占比。 我们此处主要基于投入产出表进行计算。投入产出表属于国民经济核算的一部分,它把生产法、收入法、支出法的GDP核算数据全部整合在了一张表内,有比较详细的国民经济各行业增加值数据。但由于工程量比较大,5年才编制一次,最新的一次是在2017年。 用投入产出表计算的问题在于,一是时间可能稍微有点旧,只有2017年数据。二是它统计的是全部工业,而月度工业增加值只针对规模以上工业。三是投入产出表是按照产品分类进行统计的,而工业增加值是按照部门分类进行统计。不过总的来说,这些误差都在可接受范围内。 2017年投入产出表中,一共有95个行业属于工业,可以通过合并,将他们与工业大类行业逐一对应起来。最终计算出的各行业增加值在工业增加值中的占比如下表所示。 可以看到,建材、化工、能源、汽车、计算机通信、钢铁煤炭等行业在我国工业结构中居于主要地位。前十大工业增加值占比合计超过50%,对整体工业增加值增速有较大的影响力,我们往往在分析时也会更重视这些产业。 由于有40个左右的工业行业,单个分析无异于管中窥豹。所以,除了关注一些重要行业(比如钢铁、化工)或者是月度异常值(比如个别行业增速突然大幅提升)以外。我们还可以按照不同的行业属性,将它们按照各种维度进行合并分析。下面我们提示几个基本的视角。 1、视角一:出口依赖 我国工业生产主要受内需形势影响,但有些行业受海外需求的影响也较大。我们可以将所有行业分为两组进行对照分析,一组是高出口依赖型,另一组是低出口依赖型,以此区分需求冲击的类别。 工业交货值占营业收入比重,可以用来判断某行业的出口依赖度。我们将该比例在10%以上的行业定义为高出口依赖型行业,其它为低出口依赖型。根据2019年数据推算,共有15个高出口依赖型行业。这15个行业的增加值合计占工业比例大约为30%左右,其中计算机通信、电气机械等行业规模较大。 结合各行业增加值在组内的占比数据(同样基于2017年投入产出表,并假设该比例保持稳定),我们可以分别估算出高、低出口依赖组的工业增加值加权增速。 2012-2015年,两组增速均出现趋势性下行,但值得注意的是,2016年-2018年上半年,两组增速突然出现了非常明显的分化:其中高出口依赖组的增速出现了一轮上涨,低出口依赖组则变化较小,甚至有所下行。 这轮分化似乎揭示了这样一个问题:2016-2018年上半年,工业生产更多的由外需回暖支撑,内需表现平平,所以那些出口依赖度高的行业,享受到的利益也就更多。 出口交货值同比和海关出口同比均显示出,2016-2018年上半年的出口情况在好转。这一定程度上是由全球经济回暖推动的,无论是OECD综合领先指标,还是摩根大通全球综合PMI指数,均在同期出现了明显回升。 2、维度二:上中下游 另一个常见的行业划分视角是上游、中游、下游。不同的研究者的具体划分结果有所差别,但划分思路是一致的,即根据各个行业在产业链中的位置来进行划分: 1)上游行业:主要从事初级资源开采,获得最原始的工业原料。 2)中游行业:继续进行产品加工,但是这些产品往往继续用于下一阶段的生产。这其中既包括对初级资源进行加工后所形成的工业原材料,也包括未来继续用于生产活动的各种机械设备。 3)下游行业:产品往往直接面向消费,离终端需求更接近。 如下图所示,我们按照各个工业行业的特性,对其进行了上中下游划分。其中,又进一步将中游分为原材料(绿色方框)、机器设备(蓝色方框),前者离上游行业更近,后者离下游行业更近。 这四类行业增加值占比分别如下:上游为10%,中游原材料为32.1%,中游机械设备为20.5%,下游为27.4%,还有约10%的工业类别规模比较小且所处产业链位置不明确,因此我们没有纳入考量。 接下来,按照与上文类似的方法,可以计算出上中下游各自的工业增加值的加权增速。 理论上来说,上中下游的增速走势应当基本保持一致,因为需求是沿着产业链条进行传导的。首先从最靠近终端需求的下游行业开始,基于社会需求变动调整生产计划,并很快会随之带动中游、上游加快或放慢生产。 不过,上游有时受价格的影响也很大。比如原油价格上升,可能会明显增厚石油公司的利润,这就会诱导其加快工业生产。这种冲击属于供给端的冲击,它对于整个工业产业链的影响是比较复杂的。 虽然2016年至今,整体工业增加值增速的走势波动较小,但是内部结构却出现了很大差异。2016到2018上半年间,上中下游工业分化。其中上游工业和中游原材料生产明显走弱,而中游机械设备、下游则出现了工业增加值增速的抬升。 这段时期的分化,如果只从数据面板来推测,大概率是因为上中下游受到的冲击各不相同。 首先,上游行业、中游原材料行业面临的冲击,可能主要来自于供给侧改革。由于环保限产、企业停工倒闭等一系列因素,工业增加值增速持续下行。(但下文中我们会结合高频数据,对这一推断进行修正) 中游机械设备和下游行业的上升,很大程度上是受外需提振。上文中提到的高出口依赖型行业,大多属于中游机械设备或下游行业。2018年下半年,中游机械设备和下游行业的工业增加值增速也出现了明显分化,后者迅速下跌,但是前者保持了韧性。 这反映了外需承压后,国内消费与投资间的差异。下游行业离消费更近,但消费持续低迷;中游机械设备离投资更近,而在2018年,制造业投资增速在强势回升。 3、维度三:新旧动能 此外,目前中国正处于新旧动能转换期,我们应当更关注与新动能相关的科技产业。 统计局近年来开始公布高技术产业、战略性新兴产业的增加值同比数据,这两类产业很大程度上代表了工业中的技术进步力量,也是我们经常能够听到的概念。 先来厘清一下它们各自的概念范畴:1)高技术产业/高技术制造业,是指R&;D投入强度相对高的制造业行业。2)战略性新兴产业,则主要指对经济社会全局和长远发展具有重大引领带动作用的产业。 从对应的国民经济行业范围来看,战略性新兴产业所涉及的领域,要比高技术产业更广泛(但是战略性新兴产业对应行业中,往往只有行业内的部分高端活动属于战略性新兴产业)。这在统计数据上也可以反映出来,2018年末全国从事战略性新兴产业生产的规模以上工业企业数为66214个,规模以上高技术产业企业数则只有33573个。 总体而言,高技术产业则更适合用于描述研发强度较高、发展已较为成熟的工业类科技产业。战略性新兴产业则涉及产业面更广,也更尖端。总体而言,后者能更全面、准确地反映中国科技创新的力量。 但是这两类产业的工业增加值数据发布时间都比较短。从已发布的数据来看,高技术产业和战略性新兴产业的增加值同比增速,持续高于总体工业增加值同比,说明新动能表现确实优于旧动能。 不过,2019年以来两类产业的增速已经快速回落,与整体工业数据差距有所收窄,这主要是受中美贸易摩擦影响。计算机通信制造业和高技术产业的增加值同比走势很接近,在2019年,计算机通信制造业的出口出现了断崖式下落,进而带动其增加值增速下行,其他高技术产业、战略性新兴产业也面临类似的问题。 3 如何预判工业增加值数据? 工业增加值为月频数据,公布时间为下个月的12-18号,其实是相对滞后的。 在实际中,我们可以借助一些其他指标,对短期工业生产状况进行辅助判断和预测,包括各种微观的高频指标(日频、周频、旬频等)。 (一)PMI生产指数 目前反映工业生产面的月度宏观数据,主要就两个,一个是工业增加值,一个是制造业PMI生产指数。PMI数据在每个月最后一天发布,及时性很高,相对于工业增加值数据要早了半个月左右。 PMI生产指数是13个PMI分项指数中的一个。它反映的是制造业的产品生产量变化,而制造业是工业的主要部分。如果PMI生产指数大于50,说明工业生产活动在扩张,小于50则说明在收缩。 由于制造业PMI生产指数本质上是一个环比指标,因此可以和PMI直接进行对比的是工业增加值季调环比,两者走势具有一定的同步性。(也可以将PMI指数转化为虚拟同比,然后再与工业增加值同比进行对比) 这意味着,如果本月末发布的PMI数据上升,那么我们可以简单预判本月的工业增加值数据(在下个月发布)也会上升。 但是PMI生产指数采用的统计方法是问卷调查法。它的取值只能反映趋势,而不能反映真实的工业生产活动变化率,这一点是它和工业增加值数据的最大不同,也是导致它们之间出现走势背离的重要原因。 PMI数据备受市场关注,我们未来也有专门的报告对它进行解读。 (二)相关高频指标 一些频率更高的微观数据也可以显示出工业生产状况。与工业增加值数据相关的、值得挑选的高频指标,主要来自于三个方向: 1)能够相对全面反映工业生产状况的指标,比如发电耗煤、货运量等。 1)能够揭示重点行业生产状况的指标,比如钢铁、化工、汽车等工业生产数据等。 3)能够反映上游价格和下游需求的指标。 第三类指标尽管不直接反映生产面,但会释放与工业生产有关的重要信号。上游原材料方面,市场一般比较关注动力煤、原油、螺纹钢、水泥等价格变动。下游需求主要关注房地产、建筑业相关数据。考虑到本篇报告主要针对工业生产,所以这些数据我们在本文中暂不进行具体分析。 接下来我们将对第一类和第二类中,那些市场经常引用的高频数据进行介绍。 另外需要说明的是,在展开分析之前,往往需要对这些指标做一些基本的数据整理,将高频数据转化为低频。例如将日频数据累加/平均为月频,然后再计算同比增速,与工业增加值同比进行比较。 1、类型一:发电耗煤量和铁路货运量 在介绍具体的高频指标之前,我们首先来看看一个前几年很火的概念——克强指数,它可以为我们寻找高频指标提供一些思路。 克强指数于2010年推出,这是一个由英国《经济学人》杂志创造的用于评估中国GDP增长的指标,很大程度上其实反映的是工业生产的景气度。 它混合了三种指标,计算公式如下:工业用电量增速×40% + 中长期贷款余额增速×35% + 铁路货运量增速×25%,三个指标的权重是通过简单回归计算出来的。 克强指数和工业增加值同比的走势,在2016年之前的相关性还是很高的,但是2016年后却发生了明显背离,克强指数大幅提升,但是工业增加值却变动不大。这似乎与我们上文中提到的2016年后的行业分化隐约有一些联系。 这种背离,在我们下文介绍其他高频指标时还会经常看到。目前暂且保留这些疑问,我们会在最后一章探讨这个奇怪的现象。 克强指数中的工业用电量、铁路货运量,都从侧面反映了真实的工业生产状况,我们也可以从这两个方向着手寻找高频指标。 第一,工业生产需要大量耗电。因此,工业用电量的变化率某种程度上可以作为工业生产的替代指标。 国家能源局每月会发布全国电力统计数据,其中就有工业用电量的当月同比。它和工业增加值同比之间有较强的相关性。 不过,工业用电量数据也是月频数据,且发布时间和工业增加值差不多,不具备前瞻性。 市场更常用于观察工业生产的指标是6大发电集团耗煤量(甚至可以说是最常用的高频观测指标了),它是日频数据,连续性好,便于跟踪。6大发电集团分别是浙电、上电、粤电、大唐、华能、国电,2020年3月后由华电数据代替国电数据。具体数据通过取样这6大集团旗下位于沿海火电厂的煤炭日耗数据而得。 首先需要说明的是,6大集团的耗煤量数据自2020年7月以来已经陆续停止更新了,暂时还不清楚是短期停更还是长期停更。考虑到这个指标以前的使用频率比较高,我们这里还是重点介绍一下。 使用这一指标的逻辑在于,目前我国发电量80%来自于火电,因此可以通过大型发电集团的耗煤量,粗略地代替发电数据,进而观察社会用电情况(发电量和用电量数据很接近)。 可以将发电耗煤量的日频数据加总成月度数据,然后计算同比。如果本月6大发电集团耗煤量同比提升,一般预测本月工业增加值同比也将提升。 但是两者出现背离的时候也很多。以2011年-2019年为观察区间,6大发电集团耗煤量同比预测的成功率大概在64%左右。具体来看,在各年1-2月、3月、4月份的预测成功率较高,而在5月和10月的预测成功率则非常低。 发电耗煤量和工业增加值数据出现背离的原因,可能包含以下几点: 1)工业用电数据本身就与工业生产存在背离,进而导致发电耗煤数据与工业数据背离。 2)6大发电集团耗煤量反映的是社会总用电量,即除了工业用电以外,还会反映第三产业用电、居民用电,它们也存在自身的波动规律。工业用电目前占比为6-7成。 3)6大发电集团耗煤量更多反映的是东部沿海地区的用电情况。而中西部地区和东部沿海地区的产业结构、气候特征不一样,电力需求可能存在地域差距。 4)发电耗煤量只反映了国内火电发电情况,外来电、水电、风电、核电等都不在考虑范围内。 但总的来说,6大发电集团数据来源很清晰,时效性很好,尽管存在一些微观数据难以避免的弊病,也不失为一个可供参考的指标,所以此前在市场分析的使用频率也比较高。 第二,工业生产与货物运输关联密切,尤其是铁路货运量。所以通过铁路货运量的变化,也可以间接判断工业生产形势。 但同样地,国家统计局披露铁路货运量数据的时间,要晚于工业增加值。 市场常用大秦铁路(行情601006,诊股)货运量数据来替代。该数据为月度数据,由大秦铁路上市公司于每月10日前公布,在时间上领先工业增加值。 大秦铁路是连接山西大同与河北秦皇岛的国铁Ⅰ级货运专线,从历史数据来看,大秦铁路货运量大体上能反映整体铁路货运量的趋势变化。与此同时,大秦线承担着"西煤东运"、"北煤南调"的国家战略任务,其货运量中70%以上为煤炭,所以它其实也间接地反映了发电耗煤情况。 2016年之前,铁路货运量同比与工业增加值同比的同步性还不错,但是2016年之后也出现了相当严重的背离。大秦铁路货运量数据是在2014年之后才披露的,受2016年后特殊情况影响,它用来判断工业生产的准确率其实并不高。 2、类型二:重点行业生产状况指标 此外,我们可以挑选出一些重点行业进行监测,寻找与这些行业生产相关的高频指标。 结合上文中提到的各行业增加值占比,目前可以重点关注的工业类别包括黑色金属冶炼及压延加工业、化学原料及化学制品制造业/化学纤维制造业、汽车制造业,即钢铁、汽车、化工行业,这些行业都有一些可供参考的高频数据。 首先看钢铁行业。目前市场上分析钢铁行业生产情况的高频指标,一般有高炉开工率、粗钢产量。 1)高炉开工率 = 开工高炉数÷总高炉数,该指标为周频数据,由Mysteel网站披露。高炉开工情况来自对全国163家钢厂样本的调研。 自有2015年下半年有数据以来,高炉开工率其实是在不断走低的,然后在2018至今,基本维持在60%-70%的区间内波动。从唐山钢厂的情况来看,2015年-2017年总高炉数变化不大,主要是开工高炉数在减少,反映的是供给侧改革和环保限产政策的影响。 另外,高炉开工率还有比较明显的季节波动特征,一般是二三季度较高,一四季度偏低。我们在分析这一数据时,一般会从环比的视角来看开工率是上升还是下降,直观地感受下近期钢铁工业生产是加快还是放缓。但为了剔除季节性影响,也会对比上年同期的开工率。 2)重点企业粗钢日均产量为旬度数据,由中国钢铁工业协会披露,大约每旬结束的3-5天内会披露该旬数据。统计对象为参与旬报统计的会员钢企。 但是这个数据的质量不是很高,因为有时监测企业会有不上报数据的情况,这时钢铁协会只能用这些企业的历史数据带入估算。另外,钢铁协会每年统计的会员钢铁企业不一致,可能有口径不可比的问题。 将重点企业粗钢日均产量(钢铁协会口径)转换为月度同比之后,基本上可以替代发布更滞后的粗钢产量当月同比(统计局口径)。除去2016年,它们与黑色金属冶炼及压延加工业增加值也有较好的相关性。 其次看汽车制造业。汽车行业的常用跟踪指标主要包括:汽车半/全钢胎开工率、汽车产量。 1)汽车半/全钢胎开工率,由中国橡胶信息贸易网披露,二者均为周频数据,一般在每周五更新。 这两个开工率数据都和汽车轮胎生产有关,两者在细节上略微有点不一样,半钢胎主要用于轿车和大部分轻卡,全钢胎主要用于卡车和小部分轻卡,历史走势来看两者没有太大的区别。 汽车半/全钢胎开工率,主要反映了轮胎厂商的生产情况,但是因为轮胎和下游汽车的联系比较紧密,所以也间接反映了汽车生产情况。 这两个指标的分析方法和高炉开工率差不多。如果把它们处理成月度同比变动,可以发现和汽车制造业同比也存在一定的关联度。 2)汽车产量。目前统计局、中汽协、乘联会都会发布相关的月度数据,这三个口径的汽车产量,官方程度依次下降,但是披露时间依次提前。乘联会数据的披露时间一般在下个月上旬,汽车工业协会数据一般在下月10号左右,均略微领先于工业增加值。 另外,中汽车披露的汽车数据包括乘用车和商用车,乘联会只披露乘用车数据,不过近年来乘用车占比约在80%-90%左右。从历史走势来看,三个不同口径下的汽车产量增速差异不是很大。 汽车产量同比与汽车制造业增加值同比基本上是高度相关的。 最后是化工行业。化工行业的跟踪指标可以采用PTA产业链负荷率。 我们可以简单地将PTA(精对苯二甲酸)理解为一种重要的化工产品,它的下游延伸产品主要是涤纶(即聚酯纤维),涤纶又属于化纤的一种。所以PTA产业链负荷率可以大致反映化学原料及化学制品制造业、化学纤维制造业的生产情况。 PTA产业链负荷率为日频数据。有一点类似于汽车半/全钢胎开工率,我们可以对PTA产业链负荷率采用同样的数据处理和分析方法。 但这个数据的质量似乎不是很高。我们对PTA产业链负荷率做当月同比处理,然后对化学原料及化学制品制造业、化纤制造业的增加值同比进行简单平均,以反映化工行业整体情况,两个指标只有在部分时间是同步的。 (三)工业增加值数据缘何与高频指标背离? 根据上文的高频数据,可以看到一个比较奇怪的现象:过去那些与工业增加值有着密切联系的高频指标,近年来似乎统统出现了背离。 2016-2017年,工业用电量、发电耗煤、铁路货运量、高炉开工率同比数据均已大幅回升,这反映了工业生产在明显加快。但工业增加值同比却一直趴在6%附近,维持着一种超预期的稳态(见图表20、21、23)。 这使人感到困惑。市场上也出现了一些关于工业增加值“失真”的讨论。 可以从行业结构上来解释这一点吗?上文中曾提到,2016年以来的上游和中游原材料行业、中游机械设备和下游行业,各行业的工业增加值数据,在这段时期也出现了一些明显的趋势性分化。 有一种解释是这段时期的产业升级。上游和中游原材料往往是高能耗行业,铁路货运量也比较大,假如由于产业升级等原因,它们对工业生产的影响力下降。那么它们的生产加快,可能对整体工业增加值数据的影响比较弱。这有助于解释“发电量强、工业增加值弱”之类的情况。 事实恰恰相反。实际上2016年正是上游和中游原材料在趋势性下行,直到2017年才陆续见底回升(然而2017年下半年高频数据显示工业生产其实已经开始回落),反倒是中游机械设备和下游行业的生产加快,起了对冲作用,在支撑着工业增加值。(见图表14) 不过这也说明,问题可能正是出在上游和中游原材料行业。 那么是高频数据错了,或者说高频数据受到了特殊因素干扰吗?可能性也很低。首先,几个不同类别的高频数据都共同印证了2016年后上游、中游原材料工业生产在加快。其次,统计局公布的各种工业品产量数据,也显示出生产加快的痕迹,例如煤炭、钢铁、有色、水泥等产量,在2015年下半年-2016年初就已经开启了新一轮扩张。 理论上来说,工业增加值剔除了价格因素,应该与产量的变动是保持一致的。中游机械设备和下游行业这一点就表现的很好,比如上文曾提到的汽车产业(见图表28)、还有下图中的通用设备制造业等。 产量数据还顺便说明了统计口径也不是关键问题。 部分观点提到,工业增加值同比只囊括了规模以上的企业,而高频数据比如发电量背后反映的是所有工业企业的信息。如果是规模以下的小企业生产加快,那么用电量等高频数据会走强,但反映不到工业增加值增速之中。的确有这种可能存在。但是: 1)大企业仍然是主导高频数据(比如用电量)的主要力量,所以小企业因素对用电量与工业增加值背离的解释力比较弱。 2)小企业和大企业的生产驱动逻辑不存在本质区别,要么是价格上涨,要么是需求启动,所以很难看到小企业加快生产、大企业不动的情况。除非去产能的政策限制松动,导致更多小企业出现,但是2016年也没有出现明显的政策松动。 3)统计局提到的产量数据是关键。它其实也是针对规模以上工业企业调查的,和工业增加值是同一个口径。它的增长应该说明了规模以上工业生产的确在加快。 我们提供一种可能的解释,问题也许出在工业增加值增速的核算方法: 根据现行规则,首先得用本月工业总产值×上年增加值率推算出本月现价工业增加值,然后再用PPI缩减为不变价工业增加值,最后计算增速。理论上来说,工业总产值=产量×价格,在用PPI缩减后,确实消除了价格因素。 但是我们上文也谈到了,在实际中,工业总产值是企业通过联网直报系统直接报送数据,然后由统计局汇总而成的,而PPI的核算则是另一套程序。这可能导致价格剔除没办法做到理论上那么完美。 而在2016年,上游和中游原材料行业的PPI出现了一轮历史罕见的飙涨,使得这个核算差异可能被放大了,具体表现在企业报送工业总产值数据时,可能考虑的价格上涨因素没那么多,而PPI核算出来的价格上涨更剧烈。这就导致用PPI缩减时,把最终的不变价增加值缩减得更少了,进而降低了工业增加值的增速。 声明:《证券期货投资者适当性管理办法》于2017年7月1日起正式实施,通过本微信订阅号发布的观点和信息仅供粤开证券的专业投资者参考,完整的投资观点应以粤开证券研究院发布的完整报告为准。本订阅号难以设置访问权限,若您并非粤开证券客户中的专业投资者,为控制投资风险,请取消订阅、接收或使用本订阅号中的任何信息。若给您造成不便,敬请谅解。粤开证券不会因为关注、收到或阅读本订阅号推送内容而视相关人员为客户。本订阅号中所载内容不构成对任何人的投资建议。在任何情况下,粤开证券不对任何人因使用本订阅号中的任何内容所引致的任何损失负任何责任。 风险提示及法律申明 风险提示:股市有风险,投资需谨慎
8月5日,据远洋资本官方微信披露,远洋资本近日已完成浙江省安吉经济开发区大数据中心产业园第一期100亩土地摘牌。 同时,通过产业投资、园区开发、数据中心运营等方式,远洋资本计划在全国打造全方位的IDC网络。于安吉,预计三年内将完成安吉IDC项目20000个标准机柜、超2万平方米的数据中心建设。 对此,远洋资本常务副总经理、不动产投资中心总经理周岳表示:“此次成功摘得浙江安吉大数据中心产业园100亩地块,是远洋资本响应国家战略号召,助力地方经济发展,践行‘两山’理念的重要体现。尽管今年因为疫情影响市场有所波动,但前端互联网数据服务需求逆势增长,带来了强烈的后端数据地产需求。” 另据观点地产新媒体报道,远洋资本对大数据产业园建设与IDC基地布局已有数年。2017年,远洋资本通过战略性合作云泰数通进入数字地产领域;2018年,远洋资本落地南宁五象远洋大数据产业园项目;2019年,远洋资本成都青白江大数据生态产业园项目正式签约落户四川成都;2020年,发行国内首单IDC新型基础设施收益权ABS,首期规模11.06亿元,产品期限最长9年。